
We propose a new design optimization method for 
integrated optical phased arrays (OPA) with subarrays. 

The new design enables a low-loss mode for subarrayed 
OPA operation that offers better trade-offs between 

power consumption, optical loss, and chip area.
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The subarray design for OPA with reverse-biased EOPSs 
offers a trade-off between the number of controls and 
optical loss for a more compact footprint and reduced 
power consumption.
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➢ Applications: LiDAR, Free-space communication
➢ Demand: high scan rates, fine resolution, long range, 

and low power consumption, lower costs.
➢ Integrated OPA technology enables

➢ Rapid beamsteering
➢ Electro-Optic Phase Shifter (EOPS)

➢ High modulation speed, low power consumption
➢ More area, large drive voltage, high optical loss 

➢ Advanced, high-speed electronics

➢ Narrow beamwidth   
➢ Large array aperture and dense spaced elements

➢ Large number of elements
➢ More area for power splitting
➢ Higher power consumption

➢ Monolithic Electronic & Photonic Integrated Circuit (EPIC)
➢ Photonic filter, modulators, detectors, etc.
➢ Advanced CMOS electronics 

Extensive studies have been conducted to enhance the 
performance of OPAs at the EOPS device level.

Can we overcome the limitations of OPAs at the circuit level?

ABSTRACT

Figure 2. (a) Beamsteering field illustration. (b) Relative phase profile 
for beamsteering in a 16-element phase shifter array.
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Mehmet E. Yavuz (2023).
Beamforming by Phased 

Array Antennas.

➢ For 1-D OPA, the relative phase profile at the phase shifter array

➢ Follows a periodic sawtooth pattern.

➢ Its slope and number of period ∝ steering angle.

➢ Common phases exist between OPA antennas.

How can we leverage the common phases?

EOPS cross-sectionELECTRO-OPTIC PHASE SHIFTER

(b) The simulated characteristics of the 
EOPS under reverse bias or carrier 

depletion (length = 5.875mm, designed 
to achieve a 2π phase shift within -10V). 
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Figure 1. (a) A commonly-used, 
optimized EOPS cross-section and 
doping profile. The doping junction 
is shifted toward n-type region by 

100 nm; the p-type doping 
concentration is slightly reduced to 

optimize the optical mode region 
and achieve lower optical loss.

BEAMSTEERING AND COMMON PHASE

➢ The phase of light accumulates along its propagation path.

➢ A subarray phase shifter introduces a common phase shift 
to grouped antennas before power splitting occurs.

➢ Advanced CMOS process/packaging technologies available. 

➢ Introduce additional subarray controls to OPA’s optical 
power distribution network (OPDN).

➢ Common phases are controlled via subarrays.

➢ Higher degrees of freedom allow non-unique solutions.

➢ Folded and interleaved layouts are possible.

➢ Various subarray configurations can be implemented.

➢ OPA steering vectors for the cascaded subarray:

➢ Obtained from nonlinear programming optimization[ref:3]

➢ Slower and require more computation resources.

➢ Obtained from common phase redistribution algorithm.

➢ A simpler and faster method.

➢ The common phase redistribution algorithm:

1. Start with the original steering vector at the EOPS array.

2. Identify & remove the common phases at the current stage.

3. Transfer the common phases to the next subarray stage.

4. Realign relative phases at the current stage to minimize the 
total power.

5. Repeat Step 2,3,4 until the final common phase is removed 
from the system.
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Figure 4. Common phase redistribution process: the common phases 
are propagated to the subarray and eventually exit the system. The final 

phase shift from each phase shifter is now below 𝜋.
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Figure 3. (a) Cascaded subarray design. (b) An example layout of a partial 
subarray design in the OPDN. Folded and interleaved layouts are possible.

➢ OPA layout area reduction is achievable with subarrays.

➢ Use the developed algorithm to optimize all steering vector.

➢ Take statistics and get required phase range of each EOPS.

➢ Determine the required EOPS length of each subarray stage.

➢ Apply folding and interleaving methods to subarray stages.

Figure 6. Layouts of different subarray configurations. Each configuration 
enables a different level of area reduction. All layouts have the same 
height. (half of each subarray layout is implemented to show the 
differences). 

Figure 5. Subarray designs 
and performance statistics 
under low power 
consumption mode.

The reference design 
(without subarray)
Est. performance: 
➢ Pmax,static: 0.3nW

➢ Pmax,dynamic(20𝑀𝐻𝑧): 10μW

➢ 𝐿𝑜𝑠𝑠𝑎𝑣𝑒@antenna: −2.55dB

Low Power
Consumption 

Mode

➢ The dynamic power is obtained through EOPS’s time-
domain simulation at 20MHz.

➢ Under subarray controls, EOPSs have smaller magnitudes 
of bias voltages and changes, leading to significantly 
reduction of static and dynamic power consumptions.

➢ However, the optical loss is increased due to the common 
loss introduced by the extra lengths of subarray EOPSs.

➢ To reduce the loss, additional common phases can be 
added to each subarray stage and EOPS array based on the 
available headroom of the reverse bias limit.

Low Optical Loss
Mode

Figure 8. Subarray 
designs and performance 
statistics under low 
optical loss mode.

Figure 7. Operation in low 
loss mode by adding 
common phases to all 
stages.
➢ Without subarray: 

limited headroom is 
available for adding 
additional common 
phases.

➢ With subarray: greater 
headroom is available.

The static power 
increases several-fold 
but remains negligible.

Under high reverse bias, 
the EOPSs' capacitances 
are lower, and the 
magnitudes of voltage 
changes remain small; 
thus, the dynamic power 
consumption is still 
reduced.
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